Config
helical.models.uce.UCEConfig
Configuration class to use the Universal Cell-Embedding Model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
Literal['33l_8ep_1024t_1280', '4layer_model']
|
The model name |
"4layer_model"
|
batch_size
|
int
|
The batch size |
24
|
species
|
Literal['human', 'mouse', 'frog', 'zebrafish', 'mouse_lemur', 'pig', 'macaca_fascicularis', 'macaca_mulatta']
|
The species of the data. |
"human"
|
gene_embedding_model
|
Literal['ESM2']
|
The gene embedding model to use. For now, we only support ESM2. |
'ESM2'
|
pad_length
|
int
|
The padding length |
1536
|
pad_token_idx
|
int
|
The padding token index |
0
|
chrom_token_left_idx
|
int
|
The left chrom token index |
1
|
chrom_token_right_idx
|
int
|
The right chrom token index |
2
|
cls_token_idx
|
int
|
The cls token index |
3
|
CHROM_TOKEN_OFFSET
|
int
|
The chrom token offset |
143574
|
sample_size
|
int
|
The sample size |
1024
|
CXG
|
bool
|
Whether to use CXG or not |
True
|
output_dim
|
int
|
The output dimension |
1280
|
d_hid
|
int
|
The hidden dimension |
5120
|
token_dim
|
int
|
The token dimension |
5120
|
multi_gpu
|
bool
|
Whether to use multiple GPUs or not |
False
|
device
|
Literal['cpu', 'cuda']
|
The device to use. Either use "cuda" or "cpu". |
"cpu"
|
accelerator
|
bool
|
The accelerator configuration. By default same device as model. |
False
|
Returns:
Type | Description |
---|---|
UCEConfig
|
The UCE configuration object |
Source code in helical/models/uce/uce_config.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|