Model
helical.models.scgpt.scGPT
Bases: HelicalRNAModel
scGPT Model.
The scGPT Model is a transformer-based model that can be used to extract gene embeddings from single-cell RNA-seq data. Currently we load the continous pre-training model from the scGPT repository as default model which works best on zero-shot tasks.
Example
from helical.models.scgpt import scGPT,scGPTConfig
from datasets import load_dataset
from helical.utils import get_anndata_from_hf_dataset
import anndata as ad
scgpt_config=scGPTConfig(batch_size=10)
scgpt = scGPT(configurer=scgpt_config)
hf_dataset = load_dataset("helical-ai/yolksac_human",split="train[:25%]", trust_remote_code=True, download_mode="reuse_cache_if_exists")
ann_data = get_anndata_from_hf_dataset(hf_dataset)
dataset = scgpt.process_data(ann_data[:100])
embeddings = scgpt.get_embeddings(dataset)
print("scGPT embeddings: ", embeddings[:10])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
configurer
|
scGPTConfig
|
The model configuration. |
configurer
|
Notes
We use the implementation from this repository, which comes from the original authors. You can find the description of the method in this paper.
Source code in helical/models/scgpt/model.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
|
process_data(adata, gene_names='index', fine_tuning=False, n_top_genes=1800, flavor='seurat_v3', use_batch_labels=False, use_raw_counts=True)
Processes the data for the scGPT model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata
|
AnnData
|
The AnnData object containing the data to be processed.
The AnnData requires the expression counts as the data matrix, and the column with
the gene symbols is defined by the argument |
required |
gene_names
|
str
|
The column in |
"index"
|
fine_tuning
|
bool
|
If you intend to use the data to fine-tune the model on a downstream task, set this to True. |
False
|
n_top_genes
|
int
|
Only taken into account if you use the dataset for fine-tuning the model.
Number of highly-variable genes to keep. Mandatory if |
1800
|
flavor
|
Literal['seurat', 'cell_ranger', 'seurat_v3', 'seurat_v3_paper']
|
Only taken into account if you use the dataset for fine-tuning the model.
Choose the flavor for identifying highly variable genes.
For the dispersion-based methods in their default workflows,
Seurat passes the cutoffs whereas Cell Ranger passes |
"seurat_v3"
|
use_batch_labels
|
bool
|
Whether to use batch labels. Defaults to False. |
False
|
use_raw_counts
|
bool
|
Whether to use raw counts or not. |
True
|
Returns:
Type | Description |
---|---|
Dataset
|
The processed dataset. |
Source code in helical/models/scgpt/model.py
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
|
get_embeddings(dataset)
Gets the gene embeddings
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Dataset
|
The processed dataset to get the embeddings from. |
required |
Returns:
Type | Description |
---|---|
ndarray | List[Series]
|
The embeddings produced by the model.
The return type depends on the |
Source code in helical/models/scgpt/model.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|