Model
helical.models.uce.UCE
Bases: HelicalRNAModel
Universal Cell Embedding Model. This model reads in single-cell RNA-seq data and outputs gene embeddings. This model particularly uses protein-embeddings generated by ESM2. Currently we support human and macaque species but you can add your own species by providing the protein embeddings.
Example
from helical.models.uce import UCE, UCEConfig
from datasets import load_dataset
from helical.utils import get_anndata_from_hf_dataset
import anndata as ad
configurer=UCEConfig(batch_size=10)
uce = UCE(configurer=configurer)
hf_dataset = load_dataset("helical-ai/yolksac_human",split="train[:25%]", trust_remote_code=True, download_mode="reuse_cache_if_exists")
ann_data = get_anndata_from_hf_dataset(hf_dataset)
dataset = uce.process_data(ann_data[:100])
embeddings = uce.get_embeddings(dataset)
print("UCE embeddings ", embeddings[:10])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
configurer
|
UCEConfig
|
The model configuration. |
default_configurer
|
Notes
The Universal Cell Embedding Paper has been published on bioRxiv and it is built on top of SATURN published in Nature.
Source code in helical/models/uce/model.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
process_data(adata, gene_names='index', name='test', filter_genes_min_cell=None, use_raw_counts=True)
Processes the data for the Universal Cell Embedding model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata
|
AnnData
|
The AnnData object containing the data to be processed.
The UCE model requires the gene expression data as input and the gene symbols
as variable names (i.e., |
required |
gene_names
|
str
|
The name of the column in the AnnData object that contains the gene symbols. By default, the index of the AnnData object is used. If another column is specified, that column will be set as the index of the AnnData object. |
"index"
|
name
|
str
|
The name of the dataset. Needed for when slicing AnnData objects for train and validation datasets. |
"test"
|
filter_genes_min_cell
|
int
|
Filter threshold that defines how many times a gene should occur in all the cells. |
None
|
use_raw_counts
|
bool
|
Whether to use raw counts or not. |
True
|
Returns:
Type | Description |
---|---|
UCEDataset
|
An object that inherits from the |
Source code in helical/models/uce/model.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
|
get_embeddings(dataset)
Gets the gene embeddings from the UCE model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
UCEDataSet
|
The Dataset object containing the processed data |
required |
Returns:
Type | Description |
---|---|
ndarray
|
The gene embeddings in the form of a numpy array |